
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 07 | July - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 1

CONTROLLING CHARACTERS USING

PROCEDURAL GENERATION

Aman Soni, Satyam Tyagi, Prerna Jain, Vishal Jha, Ms. Deepika

Student, Assistant Professor

Department of Information Technology

Dr. Akhilesh Das Gupta Institute of Technology and Management

Abstract: In gaming and media, it takes a

lot of time and effort to design and that is

why a constant development in content-

generating algorithms is made. With the

introduction of procedure generation

algorithms, it has become easier to create

more data but with less significance.

In this document, we are processing the

possibility of the evolution and generating

combinations of procedural generation

with new algorithms and implementation

techniques, which makes it possible to

achieve more realistic behavior with a

wider spectrum of predicted actions of non-

player characters.

The following research is documented

based on the conclusions drawn from a

Unity3D self-developed simulation puzzle

car game (named as Hit No One) which

‘uses the data provided by the user in real-

time to control nonplayer characters’ to

demonstrate the concept, conduct the

research and make fruitful conclusions.

I. INTRODUCTION

The concept of Procedural generation is not

new. Procedural generation algorithms are in

use from a long time in the field of media

and game designing where it is being used to

create a large mass of data with relatively

low significance. In computing, procedural

generation is a method to generate data or

information by the usage of algorithms and

which usually infuses manually provided

assets with algorithmically generated assets

to produce a new amount of data that may or

may not resemble its ingredients. In games,

this concept is used to generate a large

amount of data that otherwise would have

taken much more time and effort to create

manually. E.g. - terrains, ground, grass,

water etc. are designed using such

algorithms.

Procedural generation works on the concept

of randomness created by algorithms which

can be amplified or reduced depending upon

the implementation. Though this is used to

create large amounts of data with very little

difference between entities, the same can be

used to generate data for bigger and more

complex entities which may or may not use

the same data.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 07 | July - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 2

II. CONCEPT

Procedural generation for non-player

characters is different from its general form

as there is a lesser amount of data generated

for more significant entities. Therefore, the

data to be generated depending upon the

relations, similarities, and differences in

their functionality and design. This

somehow narrows the application of the

same and is the very reason procedural

generation is not implemented on many

important characters.

But, the implementation of procedural

generation is highly dependent on the

algorithm designed and thus such algorithms

can be developed to create more distinctive

data for different entities. Though in some

cases where the entities have very similar

structures and functionalities, procedural

generation can be implemented easily as the

algorithms would not have to produce many

distinct data.

 III. DESIGNING

The designing of algorithms for generating

characters and their functional properties is

the topmost priority which is followed by

the designing of the surrounding

environment consisting of levels and other

objects.

For this particular case where the characters

have similar characteristic properties, a

singular algorithm can be applied which can

be implemented as a container containing

various properties in form of functions,

variables or procedures which can variate or

mutate depending upon their inheritance in

different objects. It can be understood as

providing raw data to the algorithm that

generated different information sets after

considering different characters. Since the

generation in real-time, the data so

generated should be readily converted into

instructions and given to those components

who need it and this should happen

efficiently in the least frames of time. Also,

the algorithm is supposed to generate the

characters before giving any instructions and

should also either create or check for all

properties that are required for a character to

function.

IV. IMPLEMENTATION

The above-explained blueprint of the

algorithm can be best implemented as a

finite state machine that computes a set of

instructions. There are several ways to

implement the same and we have used some

of them.

1. Prefabs, which are fully configured

game object components, are

fabricated to create characters (cars

in this case). Multiple prefabs were

designed in order to find the right

quality and configuration of

characters.

2. The instances of enemy players are

created as soon as an instance of a

real player character comes into

existence. All the other instances try

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 07 | July - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 3

to detect the instantiated entity (by

using tags in this case).

3. As soon as the real-time player

character spawns in the playing

environment, the rest of the entities

will receive properties based on the

current properties of the real-time

player (in this case the non-player

characters are copying player

properties such as acceleration, brake

torque, and steering, etc.) and will

pass these values for their own set of

instructions.

4. This was the manual input given by

the user. The algorithm consists of

functions that will keep generating

random values which are given to

other functions that utilize both

manual and algorithmic data to

generate values for various

properties (like position, torque,

etc.). Here procedural generation has

been applied as the values are

generated partially by both manual

and algorithmic data which is also

affected by some predetermined

factors of the algorithm.

V. APPLICATION

Though procedural content generation is

being widely used these days to produce

content for games and graphical media, this

particular deviation of procedural generation

can create content in real-time instantly.

This property can help in generating data

that does not need to look for previously

existing data to perceive accuracy in

behavior or functioning. Therefore such

algorithms can be efficient without

retraining the model on some data though

retraining can be used to increase the

efficiency of the algorithm by pressing

algorithmic calculations.

This form of procedural generation can be

used to control simpler entities that have a

pseudo-infinite number of actions possible

as they have only a fixed number of

available actions (like moving etc).

VI. FUTURE PROSPECTS

Real-time procedural content generation can

be efficiently used in situations where a

pseudo infinite state is required. That being

said, it can also be used in games where the

actions of various characters are either based

on a particular set of actions or are limited to

certain combinations.

Games based on concepts of tower defense,

strategy, planning, etc can use real-time

procedural generation to generate data based

on the real-time actions of the user and carry

forward the calculations accordingly. The

same can also be used to manage side

characters which only have a finite set of

actions which can be correlated to other

characters movement or actions.

This can also be combined with multiplayer

gameplay where the real-time characters

input can be utilized to control over a larger

amount of non-player characters.

VII. CONCLUSION

The output generated from real-time

procedural generation heavily depends upon

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 05 Issue: 07 | July - 2021 ISSN: 2582-3930

© 2021, IJSREM | www.ijsrem.com | Page 4

the algorithm so developed, the probability

of both the probable actions and the real-

time actions of the user. Since the set of

actions can be unlimited and may or may not

be predictable every time, the algorithm

used in such cases will have to be advanced

and complex in order to generate accurate

and precise data for the other characters to

be controlled.

Since this particular paper deals with the

controlling of characters as well as creating

them, there is also a need to define default

actions and values and some exception

handling which is always important.

Though procedural content generation can

be considered a very complex ideology to be

utilized in gaming, it is known for creating

data in very large amounts with lesser

manual inputs and the same can be modified

to control the characters without many

manual instructions or heavily designed

algorithms. This not just decreases the time

of development but also saves space and

dissolves the complex implementations of

algorithms to some extent.

VIII. REFERENCES

[1] Stefan Greuter, Jeremy Parker, Nigel

Stewart, Geoff Leach, RMIT University,

Melbourne, Victoria, Australia.

[2] Barbara De Kegel and Mads Haahr,

IEEE.

[3] Nicolas Marechal, Eric Galin, Adrien

Peytavie, N Maréchal, Eric Guérin.

Procedural Generation of Roads. Computer

Graphics Forum, Wiley, 2010, 2, 29,

pp.429-438.ff10.1111/j. 1467-

8659.2009.01612.xff. ffhal-01381447

http://www.ijsrem.com/

